39 research outputs found

    A new approach to service provisioning in ATM networks

    Get PDF
    The authors formulate and solve a problem of allocating resources among competing services differentiated by user traffic characteristics and maximum end-to-end delay. The solution leads to an alternative approach to service provisioning in an ATM network, in which the network offers directly for rent its bandwidth and buffers and users purchase freely resources to meet their desired quality. Users make their decisions based on their own traffic parameters and delay requirements and the network sets prices for those resources. The procedure is iterative in that the network periodically adjusts prices based on monitored user demand, and is decentralized in that only local information is needed for individual users to determine resource requests. The authors derive the network's adjustment scheme and the users' decision rule and establish their optimality. Since the approach does not require the network to know user traffic and delay parameters, it does not require traffic policing on the part of the network

    Arnold diffusion in the dynamics of a 4-machine power system undergoing a large fault

    Get PDF
    We focus on the seemingly complicated dynamics of a four-machine power system which is undergoing a sudden fault. Adopting a Hamiltonian (energy) formulation, we consider the system as an interconnection of (one degree of freedom) subsystems. Under certain configuration (a star network) and parameter values we establish the presence of Arnold diffusion which entails periodic, almost periodic, and complicated nonperiodic dyanmics all simultaneously present; and erratic transfer of energies between the subsystems. In section 1 we introduce the transient stability problem in a mathematical setting and explain what our results mean in the power systems context. Section 2 provides insights into Arnold diffusion and summarizes its mathematical formulation as in [8], [1]. Section 3 gives conditions for which Arnold diffusion arises on certain energy levels of the swing equations. These conditions are verified analytically in the case when all but one subsystem (machine) undergo relatively small oscillations

    Analysis of Solar Energy Aggregation under Various Billing Mechanisms

    Full text link
    Ongoing reductions in the cost of solar photovoltaic (PV) systems are driving their increased installations by residential households. Various incentive programs such as feed-in tariff, net metering, net purchase and sale that allow the prosumers to sell their generated electricity to the grid are also powering this trend. In this paper, we investigate sharing of PV systems among a community of households, who can also benefit further by pooling their production. Using cooperative game theory, we find conditions under which such sharing decreases their net total cost. We also develop allocation rules such that the joint net electricity consumption cost is allocated to the participants. These cost allocations are based on the cost causation principle. The allocations also satisfy the standalone cost principle and promote PV solar aggregation. We also perform a comparative analytical study on the benefit of sharing under the mechanisms favorable for sharing, namely net metering, and net purchase and sale. The results are illustrated in a case study using real consumption data from a residential community in Austin, Texas.Comment: 12 page

    Arnold diffusion in the swing equations of a power system

    Get PDF
    We present an application of the theory of Arnold diffusion to interconnected power systems. Using a Hamiltonian formulation, we show that Arnold diffusion arises on certain energy levels of the swing equations model. The occurrence of Arnold diffusion entails complex nonperiodic dynamics and erratic transfer of energy between the subsystems. Conditions under which Arnold diffusion exists in the dynamics of the swing equations are found by using the vector-Melnikov method. These conditions become analytically explicit in the case when some of the subsystems undergo relatively small oscillations. Perturbation and parameter regions are found for which Arnold diffusion occurs. These regions allow for a class of interesting systems from the point of view of power systems engineering

    Expediting Vehicle Infrastructure Integration (EVII): where the rubber meets (and talks to) the road

    No full text
    This research demonstrated two potential VII (vehicle-infrastructure integration) services, one in traffic data probes and the other with safety. A real private vehicle, operating on California roadways, “talked” to the roadside, with the roadside backhaul interfacing into an existing California Department of Transportation (Caltrans) database and archival application. Demonstration of a probe application showed great promise for supplementing Caltrans’ database with VII- or DSRC-based probe data. Similar promise was shown with a road condition monitoring system, which demonstrated the capability of detecting slippery and rough surfaces in real time
    corecore